4 research outputs found

    A task and performance analysis of endoscopic submucosal dissection (ESD) surgery

    Get PDF
    BACKGROUND: ESD is an endoscopic technique for en bloc resection of gastrointestinal lesions. ESD is a widely-used in Japan and throughout Asia, but not as prevalent in Europe or the US. The procedure is technically challenging and has higher adverse events (bleeding, perforation) compared to endoscopic mucosal resection. Inadequate training platforms and lack of established training curricula have restricted its wide acceptance in the US. Thus, we aim to develop a Virtual Endoluminal Surgery Simulator (VESS) for objective ESD training and assessment. In this work, we performed task and performance analysis of ESD surgeries. METHODS: We performed a detailed colorectal ESD task analysis and identified the critical ESD steps for lesion identification, marking, injection, circumferential cutting, dissection, intraprocedural complication management, and post-procedure examination. We constructed a hierarchical task tree that elaborates the order of tasks in these steps. Furthermore, we developed quantitative ESD performance metrics. We measured task times and scores of 16 ESD surgeries performed by four different endoscopic surgeons. RESULTS: The average time of the marking, injection, and circumferential cutting phases are 203.4 (σ: 205.46), 83.5 (σ: 49.92), 908.4 s. (σ: 584.53), respectively. Cutting the submucosal layer takes most of the time of overall ESD procedure time with an average of 1394.7 s (σ: 908.43). We also performed correlation analysis (Pearson's test) among the performance scores of the tasks. There is a moderate positive correlation (R = 0.528, p = 0.0355) between marking scores and total scores, a strong positive correlation (R = 0.7879, p = 0.0003) between circumferential cutting and submucosal dissection and total scores. Similarly, we noted a strong positive correlation (R = 0.7095, p = 0.0021) between circumferential cutting and submucosal dissection and marking scores. CONCLUSIONS: We elaborated ESD tasks and developed quantitative performance metrics used in analysis of actual surgery performance. These ESD metrics will be used in future validation studies of our VESS simulator

    Partition-based optimization model for generative anatomy modeling language (POM-GAML)

    No full text
    Abstract Background This paper presents a novel approach for Generative Anatomy Modeling Language (GAML). This approach automatically detects the geometric partitions in 3D anatomy that in turn speeds up integrated non-linear optimization model in GAML for 3D anatomy modeling with constraints (e.g. joints). This integrated non-linear optimization model requires the exponential execution time. However, our approach effectively computes the solution for non-linear optimization model and reduces computation time from exponential to linear time. This is achieved by grouping the 3D geometric constraints into communities. Methods Various community detection algorithms (k-means clustering, Clauset Newman Moore, and Density-Based Spatial Clustering of Applications with Noise) were used to find communities and partition the non-linear optimization problem into sub-problems. GAML was used to create a case study for 3D shoulder model to benchmark our approach with up to 5000 constraints. Results Our results show that the computation time was reduced from exponential time to linear time and the error rate between the partitioned and non-partitioned approach decreases with the increasing number of constraints. For the largest constraint set (5000 constraints), speed up was over 2689-fold whereas error was computed as low as 2.2%. Conclusion This study presents a novel approach to group anatomical constraints in 3D human shoulder model using community detection algorithms. A case study for 3D modeling for shoulder models developed for arthroscopic rotator cuff simulation was presented. Our results significantly reduced the computation time in conjunction with a decrease in error using constrained optimization by linear approximation, non-linear optimization solver

    Accuracy of a new hysteroscopic method in the assessment of tubal patency: Hysteroscopic Chromotubation

    No full text
    Objective The aim of this study was to evaluate the diagnostic accuracy of hysteroscopic chromopertubation (HCT) in the assessment of tubal patency by comparing its results with laparoscopic chromopertubation (LCT). Study Design The population of this prospective cohort study consisted of both fertile and infertile women. Sixty-four women were included to the study. HCT was assessed by the observation of the transport of highly concentrated methylene blue from uterine cavity to tubal ostia. The results of HCT were compared with the results of LCT as a gold standard. The accuracy of HCT, sensitivity, specificity, positive and negative predictive values in diagnosing tubal patency were calculated. Results The results of HCT and LCT were evaluated for right and left tubes, separately. One hundred and twenty-eight tubes were determined. Sensitivity, specificity, positive and negative predictive values for HCT were; 85.85%, 59.09%, 91% and 46.43%, respectively. Conclusion This study’s result showed that HCT had high sensitivity and moderate specificity values in the assessment of tubal patency. HCT during office hysteroscopy could give the chance to practitioners to assess tubal patency without subjecting the patient to multiple procedures
    corecore